On the Existence of low-degree Equations for Algebraic Attacks

نویسنده

  • Frederik Armknecht
چکیده

Algebraic attacks on block ciphers and stream ciphers have gained more and more attention in cryptography. The idea is to express a cipher by a system of equations whose solution reveals the secret key. The complexity of an algebraic attack is closely related to the degree of the equations. Hence, low-degree equations are crucial for algebraic attacks. So far, the existence of low-degree equations for simple combiners, combiners with memory and S-boxes was treated independently. In this paper, we unify these approaches by reducing them to the same problem: finding low-degree annihilators. This enables a systematic treatment and implies a general criterion for the existence of low-degree equations. The unification allows to extend former results to all three cases. Therefore, we repeat an algorithm for finding a generating set of all low-degree equations. Additionally, we introduce a new improved version, adapted to specific keystream generators (e.g., for the Bluetooth keystream generator). Finally, we describe for certain cases an upper and a lower bound for the lowest possible degree. To the best of our knowledge, the upper bound has only been presented in the context of keystream generators before and the lower bound was not published previously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Attacks and Annihilators

Algebraic attacks on block ciphers and stream ciphers have gained more and more attention in cryptography. Their idea is to express a cipher by a system of equations whose solution reveals the secret key. The complexity of an algebraic attack generally increases with the degree of the equations. Hence, low-degree equations are crucial for the efficiency of algebraic attacks. In the case of simp...

متن کامل

Algebraic attacks on certain stream ciphers

To encrypt data streams of arbitrary lengths, keystream generators are used in modern cryptography which transform a secret initial value, called the key, into a long sequence of seemingly random bits. Many designs are based on linear feedback shift registers (LFSRs), which can be constructed in such a way that the output stream has optimal statistical and periodical properties and which can be...

متن کامل

Algebraic Attacks and Decomposition of Boolean Functions

Algebraic attacks on LFSR-based stream ciphers recover the secret key by solving an overdefined system of multivariate algebraic equations. They exploit multivariate relations involving key bits and output bits and become very efficient if such relations of low degrees may be found. Low degree relations have been shown to exist for several well known constructions of stream ciphers immune to al...

متن کامل

Improved Algorithm to Find Equations for Algebraic Attacks for Combiners with Memory

Algebraic attacks have established as an important tool for cryptanalyzing LFSR-based keystream generators. Crucial for an efficient attack is to find appropriate equations of a degree as low as possible. Hereby, lower degrees are possible if many keystream bits are involved in one equation. An example is the keystream generator E0 employed in Bluetooth, where equations of degree 4 exist for r ...

متن کامل

Algebraic Attacks on Stream Ciphers (survey)

Most stream ciphers based on linear feedback shift registers (LFSR) are vulnerable to recent algebraic attacks. In this survey paper, we describe generic attacks: existence of algebraic equations and fast algebraic attacks. The generic attacks only states the existence and gives the upper bound of the complexity. Thus we should find good algebraic equations, case by case, in order to apply the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004